Issue 9, 2016

Improved extraction of fluoroquinolones with recyclable ionic-liquid-based aqueous biphasic systems

Abstract

In the past few years, the improvement of advanced analytical tools allowed to confirm the presence of trace amounts of metabolized and unchanged active pharmaceutical ingredients (APIs) in wastewater treatment plants (WWTPs) as well as in freshwater surfaces. It is known that the continuous contact with APIs, even at very low concentrations (ng L−1–μg L−1), leads to serious human health problems. In this context, this work shows the feasibility of using ionic-liquid-based aqueous biphasic systems (IL-based ABS) in the extraction of quinolones present in aqueous media. In particular, ABS composed of imidazolium- and phosphonium-based ILs and aluminium-based salts (already used in water treatment plants) were evaluated in one-step extractions of six fluoroquinolones (FQs), namely ciprofloxacin, enrofloxacin, moxifloxacin, norfloxacin, ofloxacin and sarafloxacin, and extraction efficiencies up to 98% were obtained. Despite the large interest devoted to IL-based ABS as extractive systems of outstanding performance, their recyclability/reusability has seldomly been studied. An efficient extraction/cleaning process of the IL-rich phase is here proposed by FQs induced precipitation. The recycling of the IL and its further reuse without losses in the ABS extractive performance for FQs were established, as confirmed by the four consecutive removal/extraction cycles evaluated. This novel recycling strategy supports IL-based ABS as sustainable and cost-efficient extraction platforms.

Graphical abstract: Improved extraction of fluoroquinolones with recyclable ionic-liquid-based aqueous biphasic systems

Supplementary files

Article information

Article type
Paper
Submitted
13 Oct 2015
Accepted
05 Jan 2016
First published
07 Jan 2016

Green Chem., 2016,18, 2717-2725

Author version available

Improved extraction of fluoroquinolones with recyclable ionic-liquid-based aqueous biphasic systems

H. F. D. Almeida, M. G. Freire and I. M. Marrucho, Green Chem., 2016, 18, 2717 DOI: 10.1039/C5GC02464A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements