Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 12, 2011
Previous Article Next Article

Activity and degradation pathways of pentamethyl-cyclopentadienyl-iridium catalysts for water oxidation

Author affiliations

Abstract

The activity of three [Cp*IrLn] (Cp* = pentamethylcyclopentadienyl) archetypal catalysts ([Cp*Ir (bpy)Cl]Cl (1, bpy = 2,2′-bipyridine), [Cp*Ir(bzpy)(NO3)] (2, bzpy = 2-benzoylpyridine) and [Cp*Ir(H2O)3](NO3)2 (3)) for water oxidation to molecular oxygen was compared using cerium(IV) ammonium nitrate as a sacrificial oxidant. Kinetic studies were carried out by: i) measuring the depletion of Ce4+ through UV-Vis spectroscopy, ii) directly detecting the evolved oxygen through the Clark electrode and iii) measuring the volume of the evolved oxygen. The kinetics of Ce4+ consumption were zero-order in Ce4+ for catalysts 2 and 3, while they were first-order for 1. The order with respect to catalyst was 1 for 1 and 2 while it was 1.5 for 3. As a consequence, 2 (TOFmax = 14.4 min−1) and 3 (TOFmax = 50.4 min−1) were found to be the most active catalysts at low and high catalyst concentration, respectively, while the performance of 1 (TOFmax = 8.6 min−1) increased with increasing the concentration of Ce4+. 1 and 3 were found to be the most robust catalysts at low (3.1 μM, TON = 1240) and high (7.0 μM, TON = 4042) catalyst concentration, respectively. In situNMR studies were performed under exactly the same conditions of the catalytic experiments. It was observed that Cp* underwent an oxidative degradation, ultimately leading to acetic, formic and glycolic acids. Several Ir-containing intermediates of the degradation process were intercepted and fully characterized in solution through 1D- and 2D-NMR experiments. DFT and NMR studies indicated that the degradation proceeds via an initial double oxidative functionalization of both the quanternary carbon and proton of a Cp* C–CH3 moiety.

Graphical abstract: Activity and degradation pathways of pentamethyl-cyclopentadienyl-iridium catalysts for water oxidation

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 25 Jul 2011, accepted on 31 Aug 2011 and first published on 10 Oct 2011


Article type: Paper
DOI: 10.1039/C1GC15899F
Citation: Green Chem., 2011,13, 3360-3374
  •   Request permissions

    Activity and degradation pathways of pentamethyl-cyclopentadienyl-iridium catalysts for water oxidation

    A. Savini, P. Belanzoni, G. Bellachioma, C. Zuccaccia, D. Zuccaccia and A. Macchioni, Green Chem., 2011, 13, 3360
    DOI: 10.1039/C1GC15899F

Search articles by author