Issue 4, 2010

Continuous flow synthesis of functionalized silver nanoparticles using bifunctional biosurfactants

Abstract

Silver nanoparticles were synthesized by continuous flow methods using biosurfactants, namely, oleic acid sophorolipid (OASL) and stearic acid sophorolipid (SASL). Both the sophorolipids can act as reducing and capping agents. The effect of temperature on the completion of nanoparticle formation and the particle growth dynamics (size) were studied in batch mode. While the completion of the reaction using oleic acid sophorolipid needed 20 min, only 5 min were required with the stearic acid sophorolipid as capping and reducing agent. Hence all the continuous flow experiments were carried out using the stearic acid sophorolipid. The continuous flow synthesis of silver nanoparticles was carried out in a stainless steel helical coil and also in a spiral polymeric minichannel reactor. The DLS results show that higher flow rate leads to the formation of bigger and polydisperse particles because of incomplete reactions. Higher residence time allowed the completion of reaction leading to spherical, small and monodisperse particles.

Graphical abstract: Continuous flow synthesis of functionalized silver nanoparticles using bifunctional biosurfactants

Article information

Article type
Paper
Submitted
21 Sep 2009
Accepted
10 Dec 2009
First published
04 Feb 2010

Green Chem., 2010,12, 609-615

Continuous flow synthesis of functionalized silver nanoparticles using bifunctional biosurfactants

D. V. R. Kumar, M. Kasture, A. A. Prabhune, C. V. Ramana, B. L. V. Prasad and A. A. Kulkarni, Green Chem., 2010, 12, 609 DOI: 10.1039/B919550E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements