Volume 159, 2012

A two-step mechanism for crystal nucleation without supersaturation

Abstract

There is currently considerable interest in two-step models of crystal nucleation, which have been implicated in a number of systems including proteins, colloids and small organic molecules. Classical nucleation theory (CNT) postulates the formation of an ordered crystalline nucleus directly from dilute vapour or solution. By contrast, the new models explain how crystallisation via a more concentrated but still fluid (disordered) phase can lead to a significant enhancement of nucleation rates. In this article, we extend recent work showing that crystal deposition from vapour can also be greatly accelerated by the operation of a two-step mechanism. The process relies on a very acute, annular wedge, in which restricted amounts of liquid condense below the bulk melting point Tm. Crystals then nucleate in the liquid condensates at sufficient temperature depressions ΔT (typically ≥30 K) below Tm, followed by rapid growth of these crystals from the saturated vapour. By using a range of model substances (neopentanol, norbornane, hexamethylcyclotrisiloxane, hexachloroethane, menthol, cyclooctane and pinacol) we show that this is a viable mechanism for substances with reasonably high absolute vapour pressures (>ca. 1 mm Hg). The lack of appreciable crystal deposition with substances of significantly lower vapour pressures (<ca. 0.01 mm Hg) is most likely due to geometric restrictions impeding diffusion in our experimental set-up. The results confirm the feasibility of a mechanism for atmospheric ice nucleation that has been suggested in the literature. Furthermore, there are thermodynamic analogies with the crystallisation of biominerals via amorphous or fluid-like precursor phases and protein nucleation in surface topographical features.

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2012
Accepted
04 Apr 2012
First published
05 Apr 2012

Faraday Discuss., 2012,159, 123-138

A two-step mechanism for crystal nucleation without supersaturation

T. Kovács and H. K. Christenson, Faraday Discuss., 2012, 159, 123 DOI: 10.1039/C2FD20053H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements