Volume 142, 2009

Broadband lasers to detect and cool the vibration of cold molecules

Abstract

By using broadband lasers, we demonstrate the possibilities for control of cold molecules formed via photoassociation. Firstly, we present a detection REMPI scheme (M. Viteau et al., Phys. Rev. A, 2009, 79, 021402) to systematically investigate the mechanisms of formation of ultracold Cs2 molecules in deeply bound levels of their electronic ground state X1Σg+. This broadband detection scheme could be generalized to other molecular species. Then we report a vibrational cooling technique (M. Viteau et al., Science, 2008, 321, 232) through optical pumping obtained by using a shaped mode locked femtosecond laser. The broadband femtosecond laser excites the molecules electronically, leading to a redistribution of the vibrational population in the ground state via a few absorption–spontaneous emission cycles. By removing the laser frequencies corresponding to the excitation of the v = 0 level, we realize a dark state for the so-shaped femtosecond laser, leading, with the successive laser pulses, to an accumulation of the molecules in the v = 0 level, i.e. a laser cooling of the vibration. The simulation of the vibrational laser cooling allows us to characterize the criteria to extend the mechanism to other molecular species (R. V. Krems, Int. Rev. Phys. Chem., 2005, 24, 99). We finally discuss the generalization of the technique to laser cooling of the rotation of the molecule.

Article information

Article type
Paper
Submitted
04 Nov 2008
Accepted
09 Feb 2009
First published
27 May 2009

Faraday Discuss., 2009,142, 257-270

Broadband lasers to detect and cool the vibration of cold molecules

M. Viteau, A. Chotia, D. Sofikitis, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat and P. Pillet, Faraday Discuss., 2009, 142, 257 DOI: 10.1039/B819697D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements