Volume 141, 2009

Water-mediated ordering of nanoparticles in an electric field

Abstract

Interfacial polar molecules feature a strongly anisotropic response to applied electric field, favoring dipole orientations parallel to the interface. In water, in particular, this effect combines with generic orientational preferences induced by spatial asymmetry of water hydrogen bonding under confined geometry, which may give rise to a Janus interface. The two effects manifest themselves in considerable dependence of water polarization on both the field direction relative to the interface and the polarity (sign) of the field. Using molecular simulations, we demonstrate strong field-induced orientational forces acting on apolar surfaces through water mediation. At a field strength comparable to electric fields around a DNA polyion, the torques we predict to act on an adjacent nanoparticle are sufficient to overcome thermal fluctuations. These torques can align a particle with surface as small as 1 nm2. The mechanism can support electrically controlled ordering of suspended nanoparticles as a means of tuning their properties and can find application in electro-nanomechanical devices.

Article information

Article type
Paper
Submitted
29 May 2008
Accepted
19 Jun 2008
First published
30 Sep 2008

Faraday Discuss., 2009,141, 55-66

Water-mediated ordering of nanoparticles in an electric field

D. Bratko, C. D. Daub and A. Luzar, Faraday Discuss., 2009, 141, 55 DOI: 10.1039/B809135H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements