Volume 106, 1997

Free energy of formation of defects in polar solids

Abstract

A more exact method than hitherto available, based on lattice statics and quasi-harmonic lattice dynamics, is presented for the direct minimisation of the free energies of periodic solids with very large unit cells. This is achieved via the calculation of analytic derivatives of the vibrational frequencies with respect to all external and internal variables. The method, together with large defective supercells, is used to calculate the free energies of defects in MgO as a function of temperature. A major advantage of the supercell approach is that constant-volume and constant-pressure quantities are calculated independently. This allows a critical appraisal of the common approximations used for many years: (i) to convert constant-volume defect parameters to constant-pressure and (ii) to justify the use of static calculations at constant volume in the interpretation of experimental data obtained at constant pressure and at high temperatures. Defect enthalpies show only a small variation with temperature and differ by ca. 2% from the internal energy change in the static limit. An assessment is also made of the commonly used ZSISA approximation, in which the free energy at each temperature is minimised with respect to external strains only, simultaneously determining the internal strains by minimising the static lattice energy.

Article information

Article type
Paper

Faraday Discuss., 1997,106, 377-387

Free energy of formation of defects in polar solids

M. B. Taylor, G. D. Barrera, N. L. Allan, T. H. K. Barron and W. C. Mackrodt, Faraday Discuss., 1997, 106, 377 DOI: 10.1039/A701687E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements