Issue 6, 2015

Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2

Abstract

Electrochemically active carbon nanotube (CNT) filters can effectively adsorb and oxidize chemical compounds in the anode, but the role of a cathode in electrochemical filters beyond a counter electrode has not been thoroughly investigated. In this study, a novel wastewater treatment system was developed to combine both adsorption and oxidation in the CNT anode and additional oxidation with in situ generated hydrogen peroxide (H2O2) in the CNT cathode. The impacting factors, treatment efficiency, and oxidation mechanism of the system were systematically studied. The results demonstrated that H2O2 flux could be affected by the electrode material, cathode potential, pH, flow rate, and dissolved oxygen (DO). The maximum H2O2 flux of 1.38 mol L−1 m−2 was achieved with C-grade CNT at an applied cathode potential of −0.4 V (vs. Ag/AgCl), a pH of 6.46, a flow rate of 1.5 mL min−1, and an influent DO flux of 1.95 mol L−1 m−2. Additionally, phenol was used as a model aromatic compound to evaluate the removal efficiency of the system and its oxidation rate was directly correlated with H2O2 flux. H2O2 was likely reacting with a phenol species that was anodically activated to a radical form, since H2O2 alone cannot remove phenol efficiently. Furthermore, electrochemical polymer formation via phenolic radical chain reactions may also contribute to 13% of phenol removal. A stable phenol removal efficiency of 87.0 ± 1.8% within 4 h of continuous operation was achieved with an average oxidation rate of 0.059 ± 0.001 mol h−1 m−2. The developed electrochemical CNT filtration system coupled with in situ generated H2O2 is a new application of carbon nanotube filters and can be used as an effective wastewater treatment system to remove organic pollutants or as a promising point-of-use wastewater treatment system.

Graphical abstract: Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2015
Accepted
23 Jul 2015
First published
23 Jul 2015

Environ. Sci.: Water Res. Technol., 2015,1, 769-778

Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2

Y. Liu, J. Xie, C. N. Ong, C. D. Vecitis and Z. Zhou, Environ. Sci.: Water Res. Technol., 2015, 1, 769 DOI: 10.1039/C5EW00128E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements