Issue 6, 2017

Soil sorption of two nitramines derived from amine-based CO2 capture

Abstract

Nitramines are potentially carcinogens that form from the amines used in post-combustion CO2 capture (PCCC). The soil sorption characteristics of monoethanol (MEA)- and dimethyl (DMA)-nitramines have been assessed using a batch experimental setup, and defined indirectly by measuring loss of nitramine (LC-MS/MS) from the aqueous phase (0.01 M CaCl2 and 0.1% NaN3) after equilibrium had been established with the soil (24 h). Nitramine soil sorption was found to be strongly dependent on the content of organic matter in the soil (r2 = 0.72 and 0.95, p < 0.05). Soil sorption of MEA-nitramine was further influenced by the quality of the organic matter (Abs254 nm, r2 = 0.93, p < 0.05). This is hypothesized to be due to the hydroxyl group on the MEA-nitramine, capable of forming hydrogen bonds with acidic functional groups on the soil organic matter. Estimated organic carbon normalized soil–water distribution coefficients (KOC) are relatively low, and within the same range as for simple amines. Nevertheless, considering the high content of organic matter commonly found in the top layer of a forest soil, this is where most of the nitramines will be retained. Presented data can be used to estimate final concentrations of nitramines in the environment following emissions from amine-based PCCC plants.

Graphical abstract: Soil sorption of two nitramines derived from amine-based CO2 capture

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2017
Accepted
11 May 2017
First published
12 May 2017

Environ. Sci.: Processes Impacts, 2017,19, 812-821

Soil sorption of two nitramines derived from amine-based CO2 capture

C. B. Gundersen, G. D. Breedveld, L. Foseid and R. D. Vogt, Environ. Sci.: Processes Impacts, 2017, 19, 812 DOI: 10.1039/C7EM00131B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements