Issue 1, 2012

Statistical evaluation of photon count rate data for nanoscale particle measurement in wastewaters

Abstract

The dynamic light scattering (DLS) technique can detect the concentration and size distribution of nanoscale particles in aqueous solutions by analyzing photon interactions. This study evaluated the applicability of using photon count rate data from DLS analyses for measuring levels of biogenic and manufactured nanoscale particles in wastewater. Statistical evaluations were performed using secondary wastewater effluent and a Malvern Zetasizer. Dynamic light scattering analyses were performed equally by two analysts over a period of two days using five dilutions and twelve replicates for each dilution. Linearity evaluation using the sixty sample analysis yielded a regression coefficient R2 = 0.959. The accuracy analysis for various dilutions indicated a recovery of 100 ± 6%. Precision analyses indicated low variance coefficients for the impact of analysts, days, and within sample error. The variation by analysts was apparent only in the most diluted sample (intermediate precision ∼12%), where the photon count rate was close to the instrument detection limit. The variation for different days was apparent in the two most concentrated samples, which indicated that wastewater samples must be analyzed for nanoscale particle measurement within the same day of collection. Upon addition of 10 mg l−1 of nanosilica to wastewater effluent samples, the measured photon count rates were within 5% of the estimated values. The results indicated that photon count rate data can effectively complement various techniques currently available to detect nanoscale particles in wastewaters.

Graphical abstract: Statistical evaluation of photon count rate data for nanoscale particle measurement in wastewaters

Supplementary files

Article information

Article type
Paper
Submitted
15 Mar 2011
Accepted
06 Oct 2011
First published
03 Nov 2011

J. Environ. Monit., 2012,14, 79-84

Statistical evaluation of photon count rate data for nanoscale particle measurement in wastewaters

J. Smeraldi, R. Ganesh, J. Safarik and D. Rosso, J. Environ. Monit., 2012, 14, 79 DOI: 10.1039/C1EM10237K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements