Issue 10, 2016

Optical resonance and charge transfer behavior of patterned WO3 microdisc arrays

Abstract

One- to three-dimensional alignments of semiconductors on the micro- or nanoscale have been achieved to tailor their opto-physicochemical properties and improve their photoelectrochemical (PEC) performance. Here, to the best of our knowledge, we report for the first time the fabrication of vertically aligned, well-ordered WO3 microdisc arrays via an electrodeposition process on lithographically patterned indium tin oxide (ITO) substrates as well as their geometry-specific photoelectrochemical properties. The as-fabricated WO3 microdisc arrays exhibit enhanced light absorption as well as facilitated charge separation, leading to significantly higher PEC performance than WO3 films. A finite-difference time-domain simulation of a single WO3 microdisc indicates that strong optical resonances occur particularly in the central part of the microdisc, leading to enhanced optical absorption. A time-resolved photoluminescence study further reveals that the average lifetime of charge carriers (τ) in a microdisc array is shorter than that in a film by ∼60%. The reductively deposited Au particles are localized on the side of the microdisc and ITO substrate, which suggests that the photogenerated electrons are transferred to the same location. In addition, the oxidative deposition of FeOOH particles on the top surface and side of a microdisc indicates hole transfer pathways at the same location. This downward transfer of electrons and upward transfer of holes lead to efficient charge separation, and the radial direction appears to be the most preferred shortcut for the carriers inside the bulk of a microdisc.

Graphical abstract: Optical resonance and charge transfer behavior of patterned WO3 microdisc arrays

Supplementary files

Article information

Article type
Paper
Submitted
05 Apr 2016
Accepted
14 Jun 2016
First published
14 Jun 2016

Energy Environ. Sci., 2016,9, 3143-3150

Optical resonance and charge transfer behavior of patterned WO3 microdisc arrays

H. W. Jeong, W. Chae, B. Song, C. Cho, S. Baek, Y. Park and H. Park, Energy Environ. Sci., 2016, 9, 3143 DOI: 10.1039/C6EE01003B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements