Jump to main content
Jump to site search

Issue 4, 2013
Previous Article Next Article

Thermodynamics of energy conversion via first order phase transformation in low hysteresis magnetic materials

Author affiliations

Abstract

We investigate the thermodynamics of first order non-ferromagnetic to ferromagnetic phase transformation in low thermal hysteresis alloys with compositions near Ni44Co6Mn40Sn10 as a basis for the study of multiferroic energy conversion. We develop a Gibbs free energy function based on magnetic and calorimetric measurements that accounts for the magnetic behavior and martensitic phase transformation. The model predicts temperature and field induced phase transformations in agreement with experiments. The model is used to analyze a newly discovered method for the direct conversion of heat to electricity [Srivastava et al., Adv. Energy Mater., 2011, 1, 97], which is suited for the small temperature difference regime, about 10–100 K. Using the model, we explore the efficiency of energy conversion thermodynamic cycles based on this method. We also explore the implications of these predictions for future alloy development. Finally, we relate our simple free energy to more sophisticated theories that account for magnetic domains, demagnetization effects, the crystallography of martensitic phase transformations and twinning.

Graphical abstract: Thermodynamics of energy conversion via first order phase transformation in low hysteresis magnetic materials

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 08 Nov 2012, accepted on 08 Feb 2013, published on 12 Feb 2013 and first published online on 12 Feb 2013


Article type: Paper
DOI: 10.1039/C3EE24021E
Citation: Energy Environ. Sci., 2013,6, 1315-1327
  •   Request permissions

    Thermodynamics of energy conversion via first order phase transformation in low hysteresis magnetic materials

    Y. Song, K. P. Bhatti, V. Srivastava, C. Leighton and R. D. James, Energy Environ. Sci., 2013, 6, 1315
    DOI: 10.1039/C3EE24021E

Search articles by author