Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 2, 2009
Previous Article Next Article

III–V multijunction solar cells for concentrating photovoltaics

Author affiliations

Abstract

Concerns about the changing environment and fossil fuel depletion have prompted much controversy and scrutiny. One way to address these issues is to use concentrating photovoltaics (CPV) as an alternate source for energy production. Multijunction solar cells built from III–V semiconductors are being evaluated globally in CPV systems designed to supplement electricity generation for utility companies. The high efficiency of III–V multijunction concentrator cells, with demonstrated efficiency over 40% since 2006, strongly reduces the cost of CPV systems, and makes III–V multijunction cells the technology of choice for most concentrator systems today. In designing multijunction cells, consideration must be given to the epitaxial growth of structures so that the lattice parameter between material systems is compatible for enhancing device performance. Low resistance metal contacts are crucial for attaining high performance. Optimization of the front metal grid pattern is required to maximize light absorption and minimize I2R losses in the gridlines and the semiconductor sheet. Understanding how a multijunction device works is important for the design of next-generation high efficiency solar cells, which need to operate in the 45%–50% range for a CPV system to make better economical sense. However, the survivability of solar cells in the field is of chief concern, and accelerated tests must be conducted to assess the reliability of devices during operation in CPV systems. These topics are the focus of this review.

Graphical abstract: III–V multijunction solar cells for concentrating photovoltaics

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 03 Jun 2008, accepted on 01 Sep 2008 and first published on 10 Dec 2008


Article type: Review Article
DOI: 10.1039/B809257E
Citation: Energy Environ. Sci., 2009,2, 174-192
  •   Request permissions

    III–V multijunction solar cells for concentrating photovoltaics

    H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon and N. Karam, Energy Environ. Sci., 2009, 2, 174
    DOI: 10.1039/B809257E

Search articles by author