Issue 17, 2018

Ionothermal synthesis of discrete supertetrahedral Tn (n = 4, 5) clusters with tunable components, band gaps, and fluorescence properties

Abstract

The preparation of crystalline molecularly supertetrahedral Tn clusters with variable sizes and components is of vital importance for the fundamental study of their physicochemical properties. However, setting up an efficient method to stabilize large discrete Tn clusters is a challenge due to their high negative charges and polymerization nature. In this work, we report on the ionothermal synthesis of three discrete T4 cluster compounds, namely [Bmmim]5[(CH3)2NH2]4[NH4][M4In16S31(SH)4]·6H2O (M = Mn (1), Zn (2), Cd (3), Bmmim = 1-buty-2,3-dimethyl-imidazolium), and four discrete T5 cluster compounds, namely [Bmmim]10[NH4]3[Cu5Ga30−xInxS52(SH)4] (x = 6.6 (5), 14.5 (6), 23.8 (7), and 30 (8)). The compound [Bmmim]10[NH4]3[Cu5Ga30S52(SH)4] (4) previously reported by us features a discrete T5 cluster. The steep UV-Vis absorption edges indicate band gaps of 2.20 eV for 1, 2.64 eV for 2, 2.69 eV for 3, 3.04 eV for 4, 2.65 eV for 5, 2.48 eV for 6, 2.32 eV for 7, and 2.30 eV for 8. The compositions of T5 clusters could be varied with the ratios of Ga : In in the starting reagents, providing an opportunity to systematically control the band gaps and fluorescence performances of T5 cluster-based compounds. This research might advance the understanding of the ionothermal preparation and functionality tuning of crystalline chalcogenides.

Graphical abstract: Ionothermal synthesis of discrete supertetrahedral Tn (n = 4, 5) clusters with tunable components, band gaps, and fluorescence properties

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2018
Accepted
11 Mar 2018
First published
28 Mar 2018

Dalton Trans., 2018,47, 5977-5984

Ionothermal synthesis of discrete supertetrahedral Tn (n = 4, 5) clusters with tunable components, band gaps, and fluorescence properties

D. Yang, W. Li, W. Xiong, J. Li and X. Huang, Dalton Trans., 2018, 47, 5977 DOI: 10.1039/C8DT00524A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements