Issue 6, 2018

Synthesis and antiproliferative activity of a series of new platinum and palladium diphosphane complexes

Abstract

New organometallic complexes [M(dppe)(R)2] {where M = Pt or Pd, dppe = 1,2-bis(diphenylphosphano)ethane, and R = C6F4H-x (x = 6,5,4), C6F3H2-3,5, C6F3H2-5,6, C6F3H2-3,6, C6F4(OMe)-4, and C6F4(cyclo-C5H10N)-4, the numbers x refer to the positions of the protons in the polyfluoroaryl ligands} were synthesised either through transmetalation from the dichlorido complexes [M(dppe)Cl2] or through ligand exchange using [M(diene)Cl2] precursor complexes with diene = 1,5-cyclooctadiene (cod) or 1,5-hexadiene (hex). Alternatively, [M(dppX)Cl(R)] complexes with dppX = dppm (1,1-bis(diphenylphosphano)methane), dppe, dppp (1,3-bis(diphenylphosphano)propane), and dppb (1,4-bis(diphenylphosphano)butane) were prepared in decarboxylation reactions from thallium(I) carboxylates Tl(O2CR). The different preparative methods were compared in terms of yield and purity. Structural and spectroscopic data are reported for the new dppX- and diene-M(R)2 complexes. Antiproliferative activity was investigated for these new complexes against the HT-29 (colon carcinoma) and MCF-7 (breast adenocarcinoma) cell lines, and the active compounds of this first series together with organometallic dppX or hex PtII or PdII complexes were then included in cell tests using L1210 (leukaemia cells) and the cisplatin-resistant L1210/DDP cell line. Remarkably, promising antiproliferative results were found for a few PtII and PdII complexes, while structurally closely related compounds were essentially nontoxic.

Graphical abstract: Synthesis and antiproliferative activity of a series of new platinum and palladium diphosphane complexes

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2017
Accepted
06 Jan 2018
First published
08 Jan 2018

Dalton Trans., 2018,47, 1918-1932

Synthesis and antiproliferative activity of a series of new platinum and palladium diphosphane complexes

C. Cullinane, G. B. Deacon, P. R. Drago, A. P. Erven, P. C. Junk, J. Luu, G. Meyer, S. Schmitz, I. Ott, J. Schur, L. K. Webster and A. Klein, Dalton Trans., 2018, 47, 1918 DOI: 10.1039/C7DT04615D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements