Issue 33, 2017

Considerable humidity response of a well-aligned SOMS micro-wire flexible sensor by moisture-induced releasing of trapped electrons

Abstract

Sandia Octahedral Molecular Sieves micro-wires (SOMS MWs) that exhibit ultra-high response to moisture and a short response time can be produced easily in an environmentally friendly mass production process. They are excellent candidate materials for use in humidity sensors. SOMS MWs were synthesized using niobium pentoxide as a precursor in concentrated sodium hydroxide solution. To fabricate humidity-sensing devices, electrophoresis was utilized to align the SOMS MWs on a polyethylene terephthalate (PET) substrate. The degree of alignment of SOMS MWs can be tuned by controlling the electric field during electrophoresis. Both well-aligned SOMS MWs (S-1.00) and randomly distributed SOMS MWs (S-0.00) exhibit maximum sensitivities to humidity (RRH/RDRY) of almost 104 and 107 respectively, and both exhibit short response times (34 and 38 s) and recovery times (7 and 10 s); these MWs outperform metal oxide ceramic-based materials in sensing humidity. Furthermore, the humidity response of S-1.00 exceeds that of S-0.00 by three orders of magnitude, and this result cannot be explained with reference to the Grotthuss mechanism. Therefore, the moisture-induced carriers from trapped electrons contribute significantly to the humidity response of SOMS MWs. In addition, with outstanding humidity sensing-performance under extreme bending conditions and superior durability after being bent hundreds of times, the well-aligned SOMS MW sensor is a favorable candidate for emerging multifunctional electronic-skin.

Graphical abstract: Considerable humidity response of a well-aligned SOMS micro-wire flexible sensor by moisture-induced releasing of trapped electrons

Supplementary files

Article information

Article type
Paper
Submitted
30 Jun 2017
Accepted
20 Jul 2017
First published
20 Jul 2017

Dalton Trans., 2017,46, 10859-10866

Considerable humidity response of a well-aligned SOMS micro-wire flexible sensor by moisture-induced releasing of trapped electrons

K. Chan, M. Yang, H. Chiu and C. Lee, Dalton Trans., 2017, 46, 10859 DOI: 10.1039/C7DT02366A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements