Issue 22, 2017

On the local order of amorphous La2Mo2O6.7

Abstract

The amorphous reduction product of the oxide ion conductor La2Mo2O9 was previously shown to be a good, sulphur-tolerant, anode material for solid oxide fuel cell devices (X. C. Lu, J. H. Zhu, J. Electrochem. Soc., 2008, 155(10), B1053). In this paper, we study the local order of amorphous La2Mo2O6.7 using X-ray absorption spectroscopy analyses and electronic paramagnetic resonance. The extended X-ray absorption fine structure analysis of local arrangements around Mo in La2Mo2O6.7 is first carried out on the basis of strong distortions from three crystalline models of La2Mo2O9, La7Mo7O30 and La2Mo2O7. The extended X-ray absorption fits obtained from both La2Mo2O9 and La7Mo7O30 yield similar atomic arrangements in the amorphous phase, upon large atomic displacements. However it is also possible to fit the spectrum using the paths of La2Mo2O7, in better agreement with EPR results suggesting the presence of Mo–Mo pairs. Simpler arrangements, built from theoretical single scattering paths, are considered. All models are discussed and compared. A most probable short range structure around Mo in this amorphous phase is proposed. It both fulfills EPR results and appears coherent with the presence of ionic conductivity.

Graphical abstract: On the local order of amorphous La2Mo2O6.7

Article information

Article type
Paper
Submitted
20 Feb 2017
Accepted
14 May 2017
First published
15 May 2017

Dalton Trans., 2017,46, 7273-7283

On the local order of amorphous La2Mo2O6.7

J. Vega-Castillo, G. Buvat, G. Corbel, A. Kassiba, P. Lacorre and A. Caneiro, Dalton Trans., 2017, 46, 7273 DOI: 10.1039/C7DT00637C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements