Issue 19, 2017

Tuning the luminescence properties of lanthanide coordination polymers with Ag@SiO2 nanoparticles

Abstract

A series of core–shell Ag@SiO2 nanoparticles with different core diameters and shell thicknesses have been prepared by a modified-Stöber method. They provide a facile route to tune the luminescence intensities, lifetimes and quantum efficiencies of lanthanide coordination polymers in the solid powder state. The coordination polymers [Tb2(p-PTA)3(H2O)2]n, [Tb2(o-PTA)3(H2O)2]n, [Eu2(p-PTA)3(H2O)2]n and [Eu2(o-PTA)3(H2O)2]n (PTA = phthalic acid) are synthesized and subsequently bound to the surface of Ag@SiO2 nanoparticles. The luminescence intensities of the lanthanide complexes are enhanced as high as 10.8 times. The enhancement times depend on the core diameter and shell thickness of the Ag@SiO2 nanoparticles. Importantly, by simply controlling the ratios between the complexes and the nanoparticles, the luminescence intensities, lifetimes and quantum efficiencies of the lanthanide complexes can be tuned in wide ranges. Typically, the luminescence lifetime of [Eu2(p-PTA)3(H2O)2]n powder increases from 451 μs to 783 μs when 300 μL Ag@SiO2 solution is added. Meanwhile, the luminescence quantum efficiency of the complex increases from 32.1% to 40.9%. The change of the luminescence properties of the lanthanide coordination polymers can be ascribed to the surface plasmon resonance effect of the Ag@SiO2 nanoparticles as well as the decrease of the nonradiative decay rates of the complexes.

Graphical abstract: Tuning the luminescence properties of lanthanide coordination polymers with Ag@SiO2 nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2017
Accepted
14 Apr 2017
First published
17 Apr 2017

Dalton Trans., 2017,46, 6447-6455

Tuning the luminescence properties of lanthanide coordination polymers with Ag@SiO2 nanoparticles

L. Kong, K. Kong, Y. Zhao and H. Chu, Dalton Trans., 2017, 46, 6447 DOI: 10.1039/C7DT00581D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements