Issue 41, 2015

Stability and toxicity of tris-tolyl bismuth(v) dicarboxylates and their biological activity towards Leishmania major

Abstract

A series of 29 tris-tolyl bismuth(V) di-carboxylato complexes of composition [Bi(Tol)3(O2CR)2] involving either ortho, meta or para substituted tolyl ligands have been synthesized and characterised. Of these 15 were assessed for their toxicity towards Leishmania promastigotes and human fibroblast cells, with ten then being subsequently assessed against parasite amastigotes. The carboxylate ligands are drawn from a series of substituted and biologically relevant benzoic acids which allow a comparison with earlier studies on [BiPh3(O2CR)2] and analogous Sb(V) [SbAr3(O2CR)2] (Ar = Ph and Tol) complexes. Twelve complexes have been structurally characterized by single crystal X-ray diffraction and shown to adopt a typical trigonal bipyramidal geometry in which the three tolyl ligands occupy the equatorial plane. NMR studies on two illustrative examples indicate that the complexes are stable in D2O and DMSO but only have a half-life of 1.2 hours in culture medium, with glucose being a contributing factor in decomposition and reduction to Bi(Tol)3. Despite their short lifetime many complexes show significant toxicity towards promastigotes at low concentration (<6 μM) and at that concentration provide for good selectivity indices (parasite vs. mammalian cells), for example 114 for [Bi(o-Tol)3(O2CC6H3(2-OH,5-C6H3(2,4-F2)))2] and 838 for [Bi(m-Tol)3(O2CC6H4(2-OAc))2]. Best activity and selectivity is observed with complexes containing o- and m-tolyl ligands, and it appears the primary influence on fibroblast toxicity is the Ar ligand while the carboxylate influences promastigote toxicity. The complexes are less effective in vitro against the parasite amastigotes, where longer incubation times and harsher chemical and biological environments are encountered in the assay. Nevertheless, there were some statistically relevant differences at 1 μM against the positive controls with the best performing complexes being [Bi(o-Tol)3(O2CC6H4(2-EtO))2] and [Bi(m-Tol)3(O2CC6H4(2-OAc))2].

Graphical abstract: Stability and toxicity of tris-tolyl bismuth(v) dicarboxylates and their biological activity towards Leishmania major

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2015
Accepted
24 Sep 2015
First published
01 Oct 2015

Dalton Trans., 2015,44, 18215-18226

Author version available

Stability and toxicity of tris-tolyl bismuth(V) dicarboxylates and their biological activity towards Leishmania major

Y. C. Ong, V. L. Blair, L. Kedzierski, K. L. Tuck and P. C. Andrews, Dalton Trans., 2015, 44, 18215 DOI: 10.1039/C5DT03335G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements