Issue 37, 2015

Bis(alkyl) rare-earth complexes supported by a new tridentate amidinate ligand with a pendant diphenylphosphine oxide group. Synthesis, structures and catalytic activity in isoprene polymerization

Abstract

A new tridentate amidine 2-[Ph2P(O)]C6H4NHC(tBu)[double bond, length as m-dash]N(2,6-Me2C6H3) (1) bearing a side chain pendant Ph2P[double bond, length as m-dash]O group was synthesized and proved to be a suitable ligand for coordination to rare-earths ions. Bis(alkyl) complexes {2-[Ph2P(O)]C6H4NC(tBu)N(2,6-Me2C6H3)}Ln(CH2SiMe3)2(THF)n (Ln = Y, n = 1 (3), Ln = Er, n = 1 (4), Ln = Lu, n = 0 (5)) were prepared using alkane elimination reactions of 1 and Ln(CH2SiMe3)3(THF)2 (Ln = Y, Er, Lu) in hexane and were isolated in 50, 70 and 75% yields respectively. The X-ray studies revealed that complexes 2–5 feature intramolecular coordination of P[double bond, length as m-dash]O groups to metal ions. The lutetium complex 5 proved to be rather stable: at 20 °C its half-life time is 1155 h, while for the yttrium analogue the half-life time was found to be 63 h. Complexes 3–5 were evaluated as precatalysts for isoprene polymerization. The systems Ln/borate/AliBu3 (Ln = 3–5, borate = [PhNHMe2][B(C6F5)4], [Ph3C][B(C6F5)4]) turned out to be highly efficient in isoprene polymerization and enable complete conversion of 1000–10 000 equivalents of monomer into polymer at 20 °C within 0.5–2.5 h affording polyisoprenes with a very high content of 1,4-cis units (up to 96.6%) and from narrow (1.49) to moderate (3.54) polydispersities. A comparative study of catalytic performance of the related bis(alkyl) yttrium complexes supported by amidinate ligands of different denticities and structures [tBuC(N-2,6iPr2C6H4)2], [tBuC(N-2,6-iPr2C6H4)(N-2-MeOC6H4)] and {2-[Ph2P(O)]C6H4NC(tBu)N(2,6-Me2C6H3)} demonstrated that the introduction of a pendant donor group (2-MeOC6H4 or Ph2P(O)) into a side chain of amidinate scaffolds results in a significant increase in catalytic activity. The amidinate ligand bearing a Ph2P(O)-group provides a high isoprene polymerization rate along with excellent control over regio- and stereoselectivities and allows us to obtain polyisoprenes with a reasonable molecular weight distribution.

Graphical abstract: Bis(alkyl) rare-earth complexes supported by a new tridentate amidinate ligand with a pendant diphenylphosphine oxide group. Synthesis, structures and catalytic activity in isoprene polymerization

Supplementary files

Article information

Article type
Paper
Submitted
07 Jul 2015
Accepted
17 Aug 2015
First published
18 Aug 2015

Dalton Trans., 2015,44, 16465-16474

Author version available

Bis(alkyl) rare-earth complexes supported by a new tridentate amidinate ligand with a pendant diphenylphosphine oxide group. Synthesis, structures and catalytic activity in isoprene polymerization

A. O. Tolpygin, T. A. Glukhova, A. V. Cherkasov, G. K. Fukin, D. V. Aleksanyan, D. Cui and A. A. Trifonov, Dalton Trans., 2015, 44, 16465 DOI: 10.1039/C5DT02570B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements