Issue 31, 2014

Citrate–hydrazine hydrogen-bonding driven single-step synthesis of tunable near-IR plasmonic, anisotropic silver nanocrystals: implications for SERS spectroscopy of inorganic oxoanions

Abstract

A simplified, single-step aqueous synthesis route to tunable anisotropic silver nanocrystals (NCs) has been developed by tailoring the hydrogen-bonding interactions between a mild stabilizer, sodium citrate, and a mild reductant, hydrazine hydrate. The structure directing ability of the H-bonding interaction was harnessed by keeping a stoichiometric excess of hydrazine under ambient conditions (pH 7, 25 °C). Decreasing the synthesis temperature to 5 °C imparts rigidity to the citrate–hydrazine H-bonding network, and the plasmon peak moves from 500 to 550 nm (using 40 mM hydrazine). On lowering the pH from 7 to 5, the H-bonding is further strengthened due to partial protonation of citrate and the plasmon peak is tuned to 790 nm. Further, we found that, at 5 °C and pH 5, there also exists a sub-stoichiometric regime in which maximum tunability of the plasmon peak (790→1010 nm) is achieved with 1 mM hydrazine. HR-TEM reveals that the near-IR plasmonic NCs are nanopyramids having a pentagonal base with edge length varying from 15 nm to 30 nm. Through second derivative FTIR analysis, a correlation between hydrogen-bonded molecular vibrations and the plasmon tunability has been established. The anisotropic NCs exhibit significant Raman enhancement on the citrate molecules. Further, a solution-phase, non-resonant SERS spectroscopic detection method for an inorganic contaminant of ground water, arsenite, has also been developed.

Graphical abstract: Citrate–hydrazine hydrogen-bonding driven single-step synthesis of tunable near-IR plasmonic, anisotropic silver nanocrystals: implications for SERS spectroscopy of inorganic oxoanions

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2014
Accepted
06 Jun 2014
First published
06 Jun 2014

Dalton Trans., 2014,43, 11826-11833

Author version available

Citrate–hydrazine hydrogen-bonding driven single-step synthesis of tunable near-IR plasmonic, anisotropic silver nanocrystals: implications for SERS spectroscopy of inorganic oxoanions

S. Pattanayak, A. Swarnkar, A. Priyam and G. M. Bhalerao, Dalton Trans., 2014, 43, 11826 DOI: 10.1039/C4DT01091D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements