Issue 23, 2014

Photochemical generation and kinetic studies of a putative porphyrin-ruthenium(v)-oxo species

Abstract

Photo-disproportionation of a bis-porphyrin-diruthenium(IV) μ-oxo dimer gave a porphyrin-ruthenium(III) species and a putative porphyrin-ruthenium(V)-oxo species that can be detected and studied in real time via laser flash photolysis methods. As determined by its spectral and kinetic behavior, the same oxo transient was also formed by photolysis of a porphyrin-ruthenium(III) N-oxide adduct. Second-order rate constants for reactions with several substrates at 22 °C were determined; representative values of rate constants were kox = 6.6 × 103 M−1 s−1 for diphenylmethanol, kox = 2.5 × 103 M−1 s−1 for styrene, and kox = 1.8 × 103 M−1 s−1 for cyclohexene. The putative porphyrin-ruthenium(V)-oxo transient reacted 5–6 orders of magnitude faster than the corresponding trans-dioxoruthenium(VI) porphyrins, and the rate constants obtained in this work were similar to those of the corrole-iron(V)-oxo derivative. The high reactivity for the photochemically generated ruthenium-oxo species in comparison to other porphyrin-metal-oxo intermediates suggests that it is a true ruthenium(V)-oxo species.

Graphical abstract: Photochemical generation and kinetic studies of a putative porphyrin-ruthenium(v)-oxo species

Article information

Article type
Paper
Submitted
03 Mar 2014
Accepted
03 Apr 2014
First published
03 Apr 2014

Dalton Trans., 2014,43, 8749-8756

Photochemical generation and kinetic studies of a putative porphyrin-ruthenium(V)-oxo species

R. Zhang, E. Vanover, W. Luo and M. Newcomb, Dalton Trans., 2014, 43, 8749 DOI: 10.1039/C4DT00649F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements