Issue 20, 2014

Formation of nickel–carbon heterofullerenes under electron irradiation

Abstract

A way to produce new metal–carbon nanoobjects by transformation of a graphene flake with an attached transition metal cluster under electron irradiation is proposed. The transformation process is investigated by molecular dynamics simulations by the example of a graphene flake with a nickel cluster. The parameters of the nickel–carbon potential (I. V. Lebedeva et al., J. Phys. Chem. C, 2012, 116, 6572) are modified to improve the description of the balance between the fullerene elastic energy and graphene edge energies in this process. The metal–carbon nanoobjects formed are found to range from heterofullerenes with a metal patch to particles consisting of closed fullerene and metal clusters linked by chemical bonds. The atomic-scale transformation mechanism is revealed by the local structure analysis. The average time of formation of nanoobjects and their lifetime under electron irradiation are estimated for the experimental conditions of high-resolution transmission electron microscopy (HRTEM). The sequence of images of nanostructure evolution with time during its observation by HRTEM is also modelled. Furthermore, the possibility of batch production of studied metal–carbon nanoobjects and solids based on these nanoobjects is discussed.

Graphical abstract: Formation of nickel–carbon heterofullerenes under electron irradiation

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2013
Accepted
19 Feb 2014
First published
19 Feb 2014

Dalton Trans., 2014,43, 7499-7513

Author version available

Formation of nickel–carbon heterofullerenes under electron irradiation

A. S. Sinitsa, I. V. Lebedeva, A. A. Knizhnik, A. M. Popov, S. T. Skowron and E. Bichoutskaia, Dalton Trans., 2014, 43, 7499 DOI: 10.1039/C3DT53385A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements