Issue 2, 2014

Iron–molybdenum-oxo complexes as initiators for olefin autoxidation with O2

Abstract

The reaction between [(TPA)Fe(MeCN)2](OTf)2 and [nBu4N](Cp*MoO3) yields the novel tetranuclear complex [(TPA)Fe(μ-Cp*MoO3)]2(OTf)2, 1, with a rectangular [Mo–O–Fe–O–]2 core containing high-spin iron(II) centres. 1 proved to be an efficient initiator/(pre)catalyst for the autoxidation of cis-cyclooctene with O2 to give cyclooctene epoxide. To test, which features of 1 are essential in this regard, analogues with zinc(II) and cobalt(II) central atoms, namely [(TPA)Zn(Cp*MoO3)](OTf), 3, and [(TPA)Co(Cp*MoO3)](OTf), 4, were prepared, which proved to be inactive. The precursor compounds of 1, [(TPA)Fe(MeCN)2](OTf)2 and [nBu4N](Cp*MoO3) as well as Cp2*Mo2O5, were found to be inactive, too. Reactivity studies in the absence of cyclooctene revealed that 1 reacts both with O2 and PhIO via loss of the Cp* ligands to give the triflate salt 2 of the known cation [((TPA)Fe)2(μ-O)(μ-MoO4)]2+. The cobalt analogue 4 reacts with O2 in a different way yielding [((TPA)Co)2(μ-Mo2O8)](OTf)2, 5, featuring a Mo2O84− structural unit which is novel in coordination chemistry. The compound [(TPA)Fe(μ-MoO4)]2, 6, being related to 1, but lacking Cp* ligands failed to trigger autoxidation of cyclooctene. However, initiation of autoxidation by Cp* radicals was excluded via experiments including thermal dissociation of Cp2*.

Graphical abstract: Iron–molybdenum-oxo complexes as initiators for olefin autoxidation with O2

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2013
Accepted
01 Oct 2013
First published
23 Oct 2013

Dalton Trans., 2014,43, 806-816

Iron–molybdenum-oxo complexes as initiators for olefin autoxidation with O2

J. P. Falkenhagen, C. Limberg, S. Demeshko, S. Horn, M. Haumann, B. Braun and S. Mebs, Dalton Trans., 2014, 43, 806 DOI: 10.1039/C3DT52349G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements