Issue 5, 2014

Mechanism of stabilization of dicalcium silicate solid solution with aluminium

Abstract

Stoichiometric dicalcium silicate, Ca2SiO4, displays a well-known polymorphism with temperature. When this phase is doped by a range of elements, belite, one of the main phases of cements, is generated. Here, we thoroughly study the aluminum doping of dicalcium silicate. This type of study is important for cement characterization and also from a basic point of view. Ca2Si1−2xAl2xO4−xx (x = 0, 0.010, 0.014, 0.03) has been prepared and studied by X-ray powder diffraction and the Rietveld method. The limiting composition has been established as Ca2Si0.972Al0.028O3.9860.014. The 27Al MAS NMR band located close to ∼−70 ppm is ascribed to tetrahedral environments, in agreement with the proposed aliovalent Si/Al atomic substitution mechanism. Thermal analysis measurements under a wet atmosphere indirectly confirm the increase of oxygen vacancies as the amount of incorporated protons increases with the aluminium content. A thorough electrical characterization has been carried out including overall conductivity measurements under wet and dry atmospheres and conductivity as a function of the oxygen partial pressure. The samples show oxide anion conductivity with a small p-type electronic contribution under oxidizing conditions. These compounds display a very important proton contribution to the overall conductivities under humidified atmospheres.

Graphical abstract: Mechanism of stabilization of dicalcium silicate solid solution with aluminium

Article information

Article type
Paper
Submitted
11 Aug 2013
Accepted
11 Nov 2013
First published
14 Nov 2013

Dalton Trans., 2014,43, 2176-2182

Mechanism of stabilization of dicalcium silicate solid solution with aluminium

A. Cuesta, M. A. G. Aranda, J. Sanz, Á. G. de la Torre and E. R. Losilla, Dalton Trans., 2014, 43, 2176 DOI: 10.1039/C3DT52194J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements