Issue 9, 2013

A new series of bis(ene-1,2-dithiolato)tungsten(iv), -(v), -(vi) complexes as reaction centre models of tungsten enzymes: Preparation, crystal structures and spectroscopic properties

Abstract

The carbomethoxy substituted dithiolene ligand (LCOOMe) enabled us to develop a series of new bis(ene-1,2-dithiolato)tungsten complexes including WIVO, WIV(OSiBuPh2), WVIO2, WVIO(OSiBuPh2) and WVIO(S) core structures. By using these tungsten complexes, a systematic study of the terminal monodentate ligand effects has been performed on the structural, spectroscopic properties and reactivity. The structure and spectroscopic properties of the tungsten complexes have also been compared to those of the molybdenum complexes coordinated by the same ligand to investigate the effects of the metal ion (W vs. Mo). X-ray crystallographic analyses of the tungsten(IV) complexes have revealed that the tungsten centres adopt a distorted square pyramidal geometry with a dithiolene ligand having an ene-1,2-dithiolate form. On the other hand, the dioxotungsten(VI) complex exhibits an octahedral structure consisting of the bidentate LCOOMe and two oxo groups, in which π-delocalization was observed between the WVIO2 and ene-1,2-dithiolate units. The tungsten(IV) and dioxotungsten(VI) complexes are isostructural with the molybdenum counter parts. DFT calculation study of the WVIO(S) complex has indicated that the W[double bond, length as m-dash]S bond of 2.2 Å is close to the bond length between the tungsten centre and ambiguously assigned terminal monodentate atom in aldehyde oxidoreductase of the tungsten enzyme. Resonance Raman (rR) spectrum of the WVIO(S) complex has shown the two inequivalent LCOOMe ligands with respect to their bonding interactions with the tungsten centre, reproducing the appearance of two ν(C[double bond, length as m-dash]C) stretches in the rR spectrum of aldehyde oxidoreductase. Sulfur atom transfer reaction from the WVIO(S) complex to triphenylphosphines has also been studied kinetically to demonstrate that the tungsten complex has a lower reactivity by about one-order of magnitude, when compared with its molybdenum counterpart.

Graphical abstract: A new series of bis(ene-1,2-dithiolato)tungsten(iv), -(v), -(vi) complexes as reaction centre models of tungsten enzymes: Preparation, crystal structures and spectroscopic properties

Supplementary files

Article information

Article type
Paper
Submitted
20 Sep 2012
Accepted
25 Oct 2012
First published
26 Oct 2012

Dalton Trans., 2013,42, 3059-3070

A new series of bis(ene-1,2-dithiolato)tungsten(IV), -(V), -(VI) complexes as reaction centre models of tungsten enzymes: Preparation, crystal structures and spectroscopic properties

H. Sugimoto, K. Hatakeda, K. Toyota, S. Tatemoto, M. Kubo, T. Ogura and S. Itoh, Dalton Trans., 2013, 42, 3059 DOI: 10.1039/C2DT32179C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements