Issue 41, 2011

Highly active and stereospecific polymerization of 1,3-butadiene catalyzed by dinuclear cobalt(ii) complexes bearing 3-aryliminomethyl-2-hydroxybenzaldehydes

Abstract

A series of cobalt(II) complexes bearing 3-aryliminomethyl-2-hydroxybenzaldehydes (tridentate [NOO] ligands) was prepared and characterized by FT-IR and elemental analysis along with single-crystal X-ray diffraction. The X-ray diffraction analysis revealed that a dinuclear centrosymmetrical structure formed, in which each cobalt atom is surrounded by two bridged ligands and two acetate groups as a distorted octahedron. These dinuclear cobalt complexes displayed high catalytic activities for the polymerization of 1,3-butdiene on activation with organoaluminum cocatalysts to yield cis-1,4-polybutadiene with high selectivity. Ethylaluminum sesquichloride (EASC) was found to be the most efficient cocatalyst resulting in high conversion of butadiene and cis-1,4 content in the polymers with moderate molecular weight. The high catalytic activity and stereoselectivity could be achieved in a wide range of reaction conditions. All the dinuclear cobalt complexes (C1–C6) yielded predominantly cis-1,4-polybutadienes (> 96%) with negligible amounts of trans-1,4 (< 2.4%) and 1,2-vinyl (< 1.5%) products under the Al/Co molar ratio of 80 at 25 °C. The ligand modification by varying the substituents at the 4-position of phenol and on the imino-N aryl ring showed slight influence on the catalytic activity and microstructure of the resulting polymers.

Graphical abstract: Highly active and stereospecific polymerization of 1,3-butadiene catalyzed by dinuclear cobalt(ii) complexes bearing 3-aryliminomethyl-2-hydroxybenzaldehydes

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2011
Accepted
09 Aug 2011
First published
14 Sep 2011

Dalton Trans., 2011,40, 10975-10982

Highly active and stereospecific polymerization of 1,3-butadiene catalyzed by dinuclear cobalt(II) complexes bearing 3-aryliminomethyl-2-hydroxybenzaldehydes

S. Jie, P. Ai and B. Li, Dalton Trans., 2011, 40, 10975 DOI: 10.1039/C1DT11073J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements