Issue 30, 2009

The geometric structures, vibrational frequencies and redox properties of the actinyl coordination complexes ([AnO2(L)n]m; An = U, Pu, Np; L = H2O, Cl, CO32−, CH3CO2, OH) in aqueous solution, studied by density functional theory methods

Abstract

The geometric and electronic structures of the aqua, chloro, acetato, hydroxo and carbonato complexes of U, Np and Pu in both their (VI) and (V) oxidation states, and in an aqueous environment, have been studied using density functional theory methods. We have obtained micro-solvated structures derived from molecular dynamics simulations and included the bulk solvent using a continuum model. We find that two different hydrogen bonding patterns involving the axial actinyl oxygen atoms are sometimes possible, and may give rise to different An–O bond lengths and vibrational frequencies. These alternative structures are reflected in the experimental An–O bond lengths of the aqua and carbonato complexes. The variation of the redox potential of the uranyl complexes with the different ligands has been studied using both BP86 and B3LYP functionals. The relative values for the four uranium complexes having anionic ligands are in surprisingly good agreement with experiment, although the absolute values are in error by ∼1 eV. The absolute error for the aqua species is much less, leading to an incorrect order of the redox potentials of the aqua and chloro species.

Graphical abstract: The geometric structures, vibrational frequencies and redox properties of the actinyl coordination complexes ([AnO2(L)n]m; An = U, Pu, Np; L = H2O, Cl−, CO32−, CH3CO2−, OH−) in aqueous solution, studied by density functional theory methods

Supplementary files

Article information

Article type
Paper
Submitted
27 Jan 2009
Accepted
19 Mar 2009
First published
22 Apr 2009

Dalton Trans., 2009, 5902-5909

The geometric structures, vibrational frequencies and redox properties of the actinyl coordination complexes ([AnO2(L)n]m; An = U, Pu, Np; L = H2O, Cl, CO32−, CH3CO2, OH) in aqueous solution, studied by density functional theory methods

J. P. Austin, M. Sundararajan, M. A. Vincent and I. H. Hillier, Dalton Trans., 2009, 5902 DOI: 10.1039/B901724K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements