Issue 6, 2002

Electron localisation in electrochemically reduced mono- and bi-nuclear rhenium(i) complexes with bridged polypyridyl ligands

Abstract

A number of mono- and bi-nuclear rhenium(I) complexes have been prepared and their physical properties, including the infrared spectra of the reduced complexes, have been studied. These compounds have the general formula [Re(CO)3Cl(L)] and [Cl(CO)3Re(μ-L)Re(CO)3Cl], where L can be 2,3-(2′,2″)-diquinolylquinoxaline, 6,7-dimethyl-2,3-(2′,2″)-diquinolylquinoxaline, 2,3-(2′,2″)-diquinolylbenzoquinoxaline, 6,7-dichloro-2,3-(2′,2″)-diquinolylquinoxaline, 2,3-(2′,2″)-diquinoxalylquinoxaline, 6,7-dimethyl-2,3-(2′,2″)-diquinoxalylquinoxaline, 2,3-(2′,2″)-diquinoxalylbenzoquinoxaline and 6,7-dichloro-2,3-(2′,2″)-diquinoxalylquinoxaline. The electrochemical studies show that the first reduction potential of the free ligands correlates with the reductions of the corresponding mono- and bi-nuclear complexes. The properties of the complexes have been modelled using semi-empirical methods. These show linear correlations between: (a) the energy of the MLCT transitions versus the difference in energy between the LUMO and the HOMO and (b) the change in carbonyl force constant with reduction vs. the wavefunction amplitude of the π* LUMO at the site of coordination. The experimental data and calculations point to significant alterations in the π* LUMO with substitution at the ligand and with the chelation of a second Re(I) center.

Graphical abstract: Electron localisation in electrochemically reduced mono- and bi-nuclear rhenium(i) complexes with bridged polypyridyl ligands

Supplementary files

Article information

Article type
Paper
Submitted
22 Nov 2001
Accepted
29 Jan 2002
First published
19 Feb 2002

J. Chem. Soc., Dalton Trans., 2002, 1180-1187

Electron localisation in electrochemically reduced mono- and bi-nuclear rhenium(I) complexes with bridged polypyridyl ligands

S. E. Page, A. Flood and K. C. Gordon, J. Chem. Soc., Dalton Trans., 2002, 1180 DOI: 10.1039/B110730P

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements