Issue 9, 2010

Multi-component extracellular matrices based on peptideself-assembly

Abstract

Extracellular matrices (ECMs) are challenging design targets for materials synthesis because they serve multiple biological roles, and they are composed of multiple molecular constituents. In addition, their composition and activities are dynamic and variable between tissues, and they are difficult to study mechanistically in physiological contexts. Nevertheless, the design of synthetic ECMs is a central consideration in applications such as regenerative medicine and 3D cell culture. In order to produce synthetic matrices having both multi-component construction and high levels of compositional definition, strategies based on molecular self-assembly are receiving increasing interest. These approaches are described in this tutorial review and compared with the structures and processes in native ECMs that serve as their inspiration.

Graphical abstract: Multi-component extracellular matrices based on peptide self-assembly

Article information

Article type
Tutorial Review
Submitted
01 Mar 2010
First published
05 Jul 2010

Chem. Soc. Rev., 2010,39, 3413-3424

Multi-component extracellular matrices based on peptide self-assembly

J. H. Collier, J. S. Rudra, J. Z. Gasiorowski and J. P. Jung, Chem. Soc. Rev., 2010, 39, 3413 DOI: 10.1039/B914337H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements