Issue 9, 2018

Hydrocarbon decomposition kinetics on the Ir(111) surface

Abstract

The kinetics of the thermal decomposition of hydrocarbons on the Ir(111) surface is determined using kinetic Monte Carlo (kMC) and rate equations simulations, both based on the density functional theory (DFT) calculated energy barriers of the involved reaction processes. This decomposition process is important for understanding the early stages of epitaxial graphene growth where the deposited hydrocarbon acts as a carbon feedstock for graphene formation. The methodology of the kMC simulations and the rate equation approaches is discussed and a comparison between the results obtained from both approaches is made in the case of the temperature programmed decomposition of ethylene for different initial coverages. The theoretical results are verified against experimental data from in situ X-ray photoelectron spectroscopy (XPS) experiments. Both theoretical approaches give reasonable results; however we find that, as expected, rate equations are less reliable at high coverages. We find that the agreement between experiment and theory can be improved in all cases if slight adjustments are made to the energy barriers in order to account for the intrinsic errors in DFT. Finally we extend our approach to the case where hydrocarbon species are dosed onto the substrate continuously, as in the chemical vapour deposition (CVD) graphene growth method. For ethylene and methane the thermal decomposition mechanism is determined, and it is found that in both cases the formation of C monomers is to be expected, which is limited by the presence of hydrogen atoms.

Graphical abstract: Hydrocarbon decomposition kinetics on the Ir(111) surface

Article information

Article type
Paper
Submitted
07 Nov 2017
Accepted
14 Dec 2017
First published
14 Dec 2017

Phys. Chem. Chem. Phys., 2018,20, 6083-6099

Hydrocarbon decomposition kinetics on the Ir(111) surface

H. Tetlow, D. Curcio, A. Baraldi and L. Kantorovich, Phys. Chem. Chem. Phys., 2018, 20, 6083 DOI: 10.1039/C7CP07526J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements