Issue 38, 2017

Optical and magnetic properties of antiaromatic porphyrinoids

Abstract

Magnetic and spectroscopic properties of a number of formally antiaromatic carbaporphyrins, carbathiaporphyrins and isophlorins with 4n π electrons have been investigated at density functional theory and ab initio levels of theory. The calculations show that the paratropic contribution to the magnetically induced ring-current strength susceptibility and the magnetic dipole-transition moment between the ground and the lowest excited state are related. The vertical excitation energy (VEE) of the first excited state decreases with increasing ring-current strength susceptibility, whereas the VEE of the studied higher-lying excited states are almost independent of the size of the ring-current strength susceptibility. Strong antiaromatic porphyrinoids, based on the magnitude of the paratropic ring-current strength susceptibility, have small energy gaps between the highest occupied and lowest unoccupied molecular orbitals and a small VEE of the first excited state. The calculations show that only the lowest S0 → S1 transition contributes signficantly to the magnetically induced ring-current strength susceptibility of the antiaromatic porphyrinoids. The decreasing optical gap combined with a large angular momentum contribution to the magnetic transition moment from the first excited state explains why molecules III–VII are antiaromatic with very strong paratropic ring-current strength susceptibilities. The S0 → S1 transition is a magnetic dipole-allowed electronic transition that is typical for antiaromatic porphyrinoids with 4n π electrons.

Graphical abstract: Optical and magnetic properties of antiaromatic porphyrinoids

Supplementary files

Article information

Article type
Paper
Submitted
14 Aug 2017
Accepted
11 Sep 2017
First published
18 Sep 2017

Phys. Chem. Chem. Phys., 2017,19, 25979-25988

Optical and magnetic properties of antiaromatic porphyrinoids

R. R. Valiev, H. Fliegl and D. Sundholm, Phys. Chem. Chem. Phys., 2017, 19, 25979 DOI: 10.1039/C7CP05460B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements