Issue 42, 2017

DFT study of CO2 conversion on InZr3(110) surface

Abstract

Methanol and methane synthesis from CO2 hydrogenation on a InZr3(110) surface has been studied using density functional theory calculations. The CO2 can be chemically adsorbed via a polydentated configuration and the H2 molecule can dissociate to H atoms spontaneously. The methanol is primarily formed via the HCOO route instead of the RWGS route, due to its higher activation barrier of 1.35 eV for HCO hydrogenation. In the HCOO route, the adsorbed CO2 consecutively hydrogenates to form HCOO, H2COO and the H3CO species. The H3COH is produced via the reaction of H3CO with a surface OH group. Furthermore, the C–O bonds of CO, CHO, CH2O and CH3O species prefer to dissociate to C, CH, CH2 CH3 and surface O species. Methane is formed via the hydrogenation of CHx (x = 0–3) monomers with the highest activation barrier of 1.19 eV for CH3 hydrogenation, which is higher than that of the hydrogenation of H2COO in methanol synthesis via the HCOO route. The surface O species formed during CO2 hydrogenation reacts with the adsorbed H2 molecule to produce an OH group which reacts with a surface H atom to form H2O with an activation barrier of 1.13 eV, which then desorbs to the gas phase. Our calculated results indicate that the InZr3 alloy is a potential candidate catalyst for CO2 utilization and conversion.

Graphical abstract: DFT study of CO2 conversion on InZr3(110) surface

Supplementary files

Article information

Article type
Paper
Submitted
09 Jun 2017
Accepted
17 Oct 2017
First published
17 Oct 2017

Phys. Chem. Chem. Phys., 2017,19, 28917-28927

DFT study of CO2 conversion on InZr3(110) surface

M. Zhang, M. Dou and Y. Yu, Phys. Chem. Chem. Phys., 2017, 19, 28917 DOI: 10.1039/C7CP03859C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements