Issue 28, 2017

Tuning the oxidation state of manganese oxide nanoparticles on oxygen- and nitrogen-functionalized carbon nanotubes for the electrocatalytic oxygen evolution reaction

Abstract

Manganese oxides are promising electrocatalysts for the oxygen evolution reaction due to their versatile redox properties. Manganese oxide (MnOx) nanoparticles were synthesized on oxygen- and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) by calcination in air of Mn-impregnated CNTs with a loading of 10 wt% Mn. The calcined samples were exposed to reducing conditions by thermal treatment in H2 or NH3, and to strongly oxidizing conditions using HNO3 vapor, which enabled us to flexibly tune the oxidation state of Mn from 2+ in MnO to 4+ in MnO2. The samples were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy and temperature-programmed reduction. The oxidation state of Mn was more easily changed in the MnOx/NCNTs samples compared with the MnOx/OCNTs samples. Furthermore, the reduction of MnO2 to MnO occurred in one-step on NCNTs, whereas Mn2O3 intermediate states were observed for OCNTs. STEM and TEM images revealed a smaller and uniform dispersion of the MnOx nanoparticles on NCNTs as compared to OCNTs. Electrocatalytic oxygen evolution tests in 0.1 M KOH showed that Mn in high oxidation states, specifically 4+ as in MnO2 generated by HNO3 vapor treatment, is more active than Mn in lower oxidation states, using the potential at 10 mA cm−2 and the Tafel slopes as the performance metrics.

Graphical abstract: Tuning the oxidation state of manganese oxide nanoparticles on oxygen- and nitrogen-functionalized carbon nanotubes for the electrocatalytic oxygen evolution reaction

Supplementary files

Article information

Article type
Paper
Submitted
25 Apr 2017
Accepted
27 Jun 2017
First published
27 Jun 2017

Phys. Chem. Chem. Phys., 2017,19, 18434-18442

Tuning the oxidation state of manganese oxide nanoparticles on oxygen- and nitrogen-functionalized carbon nanotubes for the electrocatalytic oxygen evolution reaction

H. Antoni, W. Xia, J. Masa, W. Schuhmann and M. Muhler, Phys. Chem. Chem. Phys., 2017, 19, 18434 DOI: 10.1039/C7CP02717F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements