Issue 21, 2017

Untangling surface oxygen exchange effects in YBa2Cu3O6+x thin films by electrical conductivity relaxation

Abstract

The kinetics of oxygen incorporation (in-diffusion process) and excorporation (out-diffusion process), in YBa2Cu3O6+x (YBCO) epitaxial thin films prepared using the chemical solution deposition (CSD) methodology by the trifluoroacetate route, was investigated by electrical conductivity relaxation measurements. We show that the oxygenation kinetics of YBCO films is limited by the surface exchange process of oxygen molecules prior to bulk diffusion into the films. The analysis of the temperature and oxygen partial pressure influence on the oxygenation kinetics has drawn a consistent picture of the oxygen surface exchange process enabling us to define the most likely rate determining step. We have also established a strategy to accelerate the oxygenation kinetics at low temperatures based on the catalytic influence of Ag coatings thus allowing us to decrease the oxygenation temperature in the YBCO thin films.

Graphical abstract: Untangling surface oxygen exchange effects in YBa2Cu3O6+x thin films by electrical conductivity relaxation

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2017
Accepted
28 Apr 2017
First published
28 Apr 2017
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2017,19, 14129-14140

Untangling surface oxygen exchange effects in YBa2Cu3O6+x thin films by electrical conductivity relaxation

P. Cayado, C. F. Sánchez-Valdés, A. Stangl, M. Coll, P. Roura, A. Palau, T. Puig and X. Obradors, Phys. Chem. Chem. Phys., 2017, 19, 14129 DOI: 10.1039/C7CP01855J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements