Issue 4, 2017

Inverted organic solar cells enhanced by grating-coupled surface plasmons and waveguide modes

Abstract

In this study, we demonstrate improved photovoltaic properties in inverted organic thin-film solar cells by simultaneous excitation of grating-coupled surface plasmons and grating-coupled waveguide modes on gold grating surfaces. The cell consists of a glass–ITO substrate/titanium dioxide/poly(3-hexylthiophene-2,5-diyl):phenyl-C61-butyric acid methyl ester/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/gold structure. The grating structures were fabricated on P3HT:PCBM layers using a nanoimprinting technique with a PDMS stamp. The grating-structured PDMS stamps were fabricated using a DVD-R grating template with a grating pitch, Λ, of 740 nm. Reflectivity measurements made using p-polarized light clearly indicate 2 types of excitation modes, i.e., surface plasmons and waveguide modes, while s-polarized light produces only waveguide modes. Incident photon-to-current efficiency measurements exhibited increased photocurrent wavelengths corresponding to the wavelengths of surface plasmon excitations and waveguide mode excitations. Through the simultaneous excitation of surface plasmons and waveguide modes, short-circuit photocurrents in the grating-structured cells exhibited an improvement of up to 11% in the solar cells, leading to an efficiency increase of 16%.

Graphical abstract: Inverted organic solar cells enhanced by grating-coupled surface plasmons and waveguide modes

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2016
Accepted
14 Dec 2016
First published
16 Dec 2016

Phys. Chem. Chem. Phys., 2017,19, 2791-2796

Inverted organic solar cells enhanced by grating-coupled surface plasmons and waveguide modes

K. Hara, C. Lertvachirapaiboon, R. Ishikawa, Y. Ohdaira, K. Shinbo, K. Kato, F. Kaneko and A. Baba, Phys. Chem. Chem. Phys., 2017, 19, 2791 DOI: 10.1039/C6CP06931B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements