Issue 13, 2017

In search of the best DFT functional for dealing with organic anionic species

Abstract

Quantum chemical computational methods are thought to have problems in dealing with unstable organic anions. This work assesses the ability of different Density Functional Theory (DFT) functionals to reproduce the electron affinity and reduction potential of organic compounds. The performance of 23 DFT functionals was evaluated by computing the negative electron affinities (from 0 eV to −3.0 eV) and reduction potentials in acetonitrile (from 0 to −2.7 V). In general, most of the hybrid GGA functionals work fine in the prediction of electron affinities, BPW91, B3PW91 and M06 being the best in each class of functionals (pure, hybrid and meta-GGA functionals, respectively). On the other hand, the ab initio post-Hartree–Fock methods, MP2 and coupled-cluster (CCSD(T)), as well as the double hybrid functionals, B2PLYP and mPW2PLYP, usually fail. For compounds with EAs lower than −1.75 eV, a method for stabilizing the anion, based on solvation with the IEFPCM model, was employed. In this case, BPW91, PBE0 and M06-HF could be the recommended option for the pure, hybrid and meta-GGA functionals, respectively. The situation improves for the evaluation and prediction of redox potentials. In this case the performance of the DFT functionals is better, in part because the solvent assists in the stabilization of the anions. Nevertheless, there is a systematic bias in the calculation of absolute redox potentials, which could be corrected by using a redox partner that helps by the cancellation of errors. In this case, the hybrid and meta-GGA functionals B3PW91, PBE0, TPSSh and M06 are also among the best for computing redox potentials with a mean absolute deviation (MAD) lower than 0.13 V.

Graphical abstract: In search of the best DFT functional for dealing with organic anionic species

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2016
Accepted
28 Feb 2017
First published
03 Mar 2017

Phys. Chem. Chem. Phys., 2017,19, 9189-9198

In search of the best DFT functional for dealing with organic anionic species

J. L. Borioni, M. Puiatti, D. M. A. Vera and A. B. Pierini, Phys. Chem. Chem. Phys., 2017, 19, 9189 DOI: 10.1039/C6CP06163J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements