Issue 40, 2015

Time-resolved photoionization spectroscopy of mixed Rydberg-valence states: indole case study

Abstract

Time-resolved photoelectron imaging was used to study non-adiabatic relaxation dynamics in gas-phase indole following photo-excitation at 267 nm and 258 nm. Our data analysis was supported by various ab initio calculations using both coupled cluster and density functional methods. The highly differential energy- and angle-resolved information provided by our experimental approach provides extremely subtle details of the complex interactions occurring between several low-lying electronically excited states. In particular, new insight into the role and fate of the mixed Rydberg-valence 3s/πσ* state is revealed. This includes population residing on the excited state surface at large N–H separations for a relatively long period of time (∼1 ps) prior to dissociation and/or internal conversion. Our findings may, in part, be rationalized by considering the rapid evolution of this state's electronic character as the N–H stretching coordinate is extended – as extensively demonstrated in the supporting theory. Overall, our findings highlight a number of important general caveats regarding the nature of mixed Rydberg-valence excited states, their spectral signatures and detection sensitivity in photoionization measurements, and the evaluation of their overall importance in mediating electronic relaxation in a wide range of small model-chromophore systems providing bio-molecular analogues – a topic of considerable interest within the chemical dynamics community over the last decade.

Graphical abstract: Time-resolved photoionization spectroscopy of mixed Rydberg-valence states: indole case study

Article information

Article type
Paper
Submitted
05 Aug 2015
Accepted
10 Sep 2015
First published
22 Sep 2015

Phys. Chem. Chem. Phys., 2015,17, 26659-26669

Author version available

Time-resolved photoionization spectroscopy of mixed Rydberg-valence states: indole case study

M. M. Zawadzki, J. O. F. Thompson, E. A. Burgess, M. J. Paterson and D. Townsend, Phys. Chem. Chem. Phys., 2015, 17, 26659 DOI: 10.1039/C5CP04645A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements