Issue 36, 2015

A high-spin organic diradical as a spin filter

Abstract

Here, in this work we have designed a molecular bridge structure which can be used as a spin filter where the prototypical highly ferromagnetic m-phenylene connected bis(aminoxyl) diradical is used as a bridging fragment between two semi-infinitely widened gold (Au) electrodes along the [100] direction. A state-of-the-art non-equilibrium Green function's (NEGF) method coupled with the density functional theory (DFT) was carried out on this two-probe molecular bridge system to understand its electrical spin transport characteristics. The spin current at various bias voltages from 0.00 V to 4.00 V at intervals of 0.20 V for this Au–diradical–Au molecular junction is evaluated. We also quantify the bias-dependent spin injection coefficients (BDSIC) at different bias voltages and also the spin-filter efficiency at equilibrium, i.e., at zero bias voltage. Also plots of BDSIC vs. voltage, the up- and down-spin current vs. voltage (IV) curves, and density of states (DOS) at zero bias voltage are evaluated.

Graphical abstract: A high-spin organic diradical as a spin filter

Supplementary files

Article information

Article type
Paper
Submitted
03 Jun 2015
Accepted
10 Aug 2015
First published
10 Aug 2015

Phys. Chem. Chem. Phys., 2015,17, 23378-23383

Author version available

A high-spin organic diradical as a spin filter

S. Shil, D. Bhattacharya, A. Misra and D. J. Klein, Phys. Chem. Chem. Phys., 2015, 17, 23378 DOI: 10.1039/C5CP03193A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements