Issue 19, 2015

Observations of probe dependence of the solvation dynamics in ionic liquids

Abstract

Solvation and rotational dynamics of 4-aminophthalimide (4AP) in four ionic liquids (ILs) are measured using a combination of fluorescence upconversion spectroscopy and time-correlated single photon counting. These data are compared with previously reported data for coumarin 153 (C153) to investigate the probe dependence of solvation dynamics. No fast component (<15 ps) in the fluorescence anisotropy is observed with 4AP. The differences between the solvation response functions of 4AP and C153 are significant in all four ILs, but these differences can be reduced by applying a correction for solute rotation using measured emission anisotropies. Response functions of other probes available in the literature are used to further examine the validity of this correction. The corrected data are also compared to predictions of dielectric continuum models of solvation. By replacing the measured static conductivity of the ILs with an estimated value, such predictions show good agreement with the observed spectral response functions, especially when the anion size is small.

Graphical abstract: Observations of probe dependence of the solvation dynamics in ionic liquids

Supplementary files

Article information

Article type
Paper
Submitted
09 Feb 2015
Accepted
08 Apr 2015
First published
10 Apr 2015

Phys. Chem. Chem. Phys., 2015,17, 12949-12956

Author version available

Observations of probe dependence of the solvation dynamics in ionic liquids

X. Zhang, J. Breffke, N. P. Ernsting and M. Maroncelli, Phys. Chem. Chem. Phys., 2015, 17, 12949 DOI: 10.1039/C5CP00814J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements