Issue 10, 2015

The fate of phenothiazine-based redox shuttles in lithium-ion batteries

Abstract

The stability and reactivity of the multiple oxidation states of aromatic compounds are critical to the performance of these species as additives and electrolytes in energy-storage applications. Both for the overcharge mitigation in ion-intercalation batteries and as electroactive species in redox flow batteries, neutral, radical-cation, and radical-anion species may be present during charging and discharging processes. Despite the wide range of compounds evaluated for both applications, the progress identifying stable materials has been slow, limited perhaps by the overall lack of analysis of the failure mechanism when a material is utilized in an energy-storage device. In this study, we examined the reactivity of phenothiazine derivatives, which have found interest as redox shuttles in lithium-ion battery applications. We explored the products of the reactions of neutral compounds in battery electrolytes and the products of radical cation formation using bulk electrolysis and coin cell cycling. Following the failure of each cell, the electrolytes were characterized to identify redox shuttle decomposition products. Based on these results, a set of decomposition mechanisms is proposed and further explored using experimental and theoretical approaches. The results highlight the necessity to fully characterize and understand the chemical degradation mechanisms of the redox species in order to develop new generations of electroactive materials.

Graphical abstract: The fate of phenothiazine-based redox shuttles in lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
13 Jan 2015
Accepted
22 Jan 2015
First published
22 Jan 2015

Phys. Chem. Chem. Phys., 2015,17, 6905-6912

Author version available

The fate of phenothiazine-based redox shuttles in lithium-ion batteries

M. D. Casselman, A. P. Kaur, K. A. Narayana, C. F. Elliott, C. Risko and S. A. Odom, Phys. Chem. Chem. Phys., 2015, 17, 6905 DOI: 10.1039/C5CP00199D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements