Issue 18, 2014

Electrochemical characteristics of nanostructured platinum electrodes – a cyclic voltammetry study

Abstract

Platinum surfaces play a decisive role in catalysis in sensors, fuel cells, solar cells and other applications like neuronal stimulation and recording. Technical advances in nanotechnology contributed tremendously to the progress in these fields. A fundamental understanding of the chemical and physical interactions between the nanostructured surfaces and electrolytes is essential, but was barely investigated up to now. In this article, we present a wet-chemical process for the deposition of nanostructures on polycrystalline platinum surfaces. The electrochemically active surface area was increased by a factor of over 1000 times with respect to the geometrical surface. The influence of the nanostructures was examined in different acidic, alkaline, and neutral electrolytes. Comparing cyclic voltammograms of nanostructured and planar polycrystalline platinum revealed new insights into the microenvironment at the electrode–electrolyte interface. The characteristic features of the cyclic voltammograms were altered in their shape and strongly shifted with respect to the applied potential. In neutral buffered and unbuffered electrolytes the water window was expanded from 1.4 V to more than 2 V. The shifts were interpreted as local pH-changes and exhausted buffer capacity in direct proximity of the electrode surface due to the strong release and binding of protons, respectively. These polarized electrodes induce significant changes in the electrochemical potential of the electrolyte due to the high roughness of their surface. The electrochemical phenomena and the observed voltage shifts are crucial for the understanding of the basic mechanism at nanostructured electrodes and mandatory for designing fuel cells, sensors and many other devices.

Graphical abstract: Electrochemical characteristics of nanostructured platinum electrodes – a cyclic voltammetry study

Article information

Article type
Paper
Submitted
22 Jan 2014
Accepted
17 Mar 2014
First published
17 Mar 2014
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2014,16, 8392-8399

Author version available

Electrochemical characteristics of nanostructured platinum electrodes – a cyclic voltammetry study

P. Daubinger, J. Kieninger, T. Unmüssig and G. A. Urban, Phys. Chem. Chem. Phys., 2014, 16, 8392 DOI: 10.1039/C4CP00342J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements