Issue 31, 2014

Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy

Abstract

The electrochemical behavior of α-Fe2O3 photoelectrodes prepared by spray pyrolysis with different thicknesses was examined under dark and illumination conditions. The main charge transport phenomena occurring in the PEC cell photoelectrodes were characterized by electrochemical impedance spectroscopy (EIS) operating under dark conditions. The impedance spectra were fitted to an equivalent electrical circuit model for obtaining relevant information concerning reaction kinetics and charge transfer phenomena occurring at the semiconductor/electrolyte interface. A three-electrode configuration was used to carry out the electrochemical measurements allowing a detailed study concerning the double charged layer at the semiconductor/electrolyte interface that arises under dark conditions. The model parameters determined by EIS were then related to the film thickness to assess the role of electronic conduction in the performance of the cell. Moreover, by correlating the sample thickness differences with their electrochemical impedance spectroscopy response, it was possible to discriminate the two main phenomena occurring on semiconductor/electrolyte interfaces of photoelectrochemical systems under dark conditions: the space charge layer and the electrical double layer.

Graphical abstract: Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
27 Dec 2013
Accepted
19 Jun 2014
First published
02 Jul 2014

Phys. Chem. Chem. Phys., 2014,16, 16515-16523

Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy

T. Lopes, L. Andrade, F. Le Formal, M. Gratzel, K. Sivula and A. Mendes, Phys. Chem. Chem. Phys., 2014, 16, 16515 DOI: 10.1039/C3CP55473B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements