Issue 7, 2014

One-step production of long-chain hydrocarbons from waste-biomass-derived chemicals using bi-functional heterogeneous catalysts

Abstract

In this study, we demonstrate the production of long-chain hydrocarbons (C8+) from 2-methylfuran (2MF) and butanal in a single step reactive process by utilizing a bi-functional catalyst with both acid and metallic sites. Our approach utilizes a solid acid for the hydroalkylation function and as a support as well as a transition metal as hydrodeoxygenation catalyst. A series of solid acids was screened, among which MCM-41 demonstrated the best combination of activity and stability. Platinum nanoparticles were then incorporated into the MCM-41. The Pt/MCM-41 catalyst showed 96% yield for C8+ hydrocarbons and the catalytic performance was stable over four reaction cycles of 20 hour each. The reaction pathways for the production of long-chain hydrocarbons is probed with a combination of infrared spectroscopy and steady-state reaction experiments. It is proposed that 2MF and butanal go through hydroalkylation first on the acid site followed by hydrodeoxygenation to produce the hydrocarbon fuels.

Graphical abstract: One-step production of long-chain hydrocarbons from waste-biomass-derived chemicals using bi-functional heterogeneous catalysts

Article information

Article type
Paper
Submitted
24 Oct 2013
Accepted
23 Dec 2013
First published
02 Jan 2014

Phys. Chem. Chem. Phys., 2014,16, 3047-3054

One-step production of long-chain hydrocarbons from waste-biomass-derived chemicals using bi-functional heterogeneous catalysts

C. Wen, E. Barrow, J. Hattrick-Simpers and J. Lauterbach, Phys. Chem. Chem. Phys., 2014, 16, 3047 DOI: 10.1039/C3CP54495H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements