Jump to main content
Jump to site search

Issue 7, 2013
Previous Article Next Article

Atomic dipole polarization in charge-transfer complexes with halogen bonding

Author affiliations

Abstract

The polarization effects associated with halogen bonding for the series of charge-transfer complexes Dm⋯X–Y, where donor molecules Dm = NH3, H2O, H2S, C2H4, CO and X–Y = Cl2, ClF, Br2, BrCl, ICl, I2, are characterized in terms of the quantum theory of atoms in molecules using the B3LYP/6-311** Kohn–Sham wave functions. We study the electrostatic potential features of separate donor and acceptor molecules, the change in atomic charges as well as the atomic electric dipole moments and their components, and the intra-atomic electron density dipole polarization and the bonding dipole moments resulting from the electron density redistribution between the molecules in the charge-transfer complexes. The equation linking the most negative electrostatic potential values in the donor molecules and the most positive values in dihalogen molecules with the stretching force constants was found using two-factor regression. It is demonstrated that the dipole polarization of the acceptor atom mirrors the strength of halogen bonding in complexes in a series of different donors and acceptors. An exponential relationship between the magnitude of the total atomic electric dipole moment of the acceptor atom and the intermolecular stretching force constant is established for weakly bounded complexes.

Graphical abstract: Atomic dipole polarization in charge-transfer complexes with halogen bonding

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 27 Sep 2012, accepted on 13 Dec 2012 and first published on 17 Dec 2012


Article type: Paper
DOI: 10.1039/C2CP43416D
Citation: Phys. Chem. Chem. Phys., 2013,15, 2530-2538
  •   Request permissions

    Atomic dipole polarization in charge-transfer complexes with halogen bonding

    E. V. Bartashevich and V. G. Tsirelson, Phys. Chem. Chem. Phys., 2013, 15, 2530
    DOI: 10.1039/C2CP43416D

Search articles by author