Issue 6, 2013

Size-controlled synthesis of silver micro/nanowires as enabled by HCL oxidative etching

Abstract

The polyol method has been widely employed for the synthesis of uniform silver nanowires (Ag NWs) in high yields. In this article, we describe the utilization of HCl oxidative etching as an effective strategy to control the width of Ag NWs produced by the polyol approach. More specifically, the width of the produced Ag NWs could be tuned from 65 to 765 nm by varying the HCl concentration in the polyol recipe. Our results indicate that the obtained widths displayed a linear and steady increase according to the HCl concentration employed in the reaction. Although the width was also dependent on other experimental parameters such as the AgNO3 and polyvinylpirrolidone (PVP) concentrations and temperature, the HCl oxidative etching enabled the controlled synthesis of Ag NWs over the widest range of widths. The size-dependent optical property investigations revealed that the transverse mode surface plasmon resonance peak for the produced Ag NWs red-shifted from 378 to 467 nm as their width increased from 77 to 584 nm. The application of Ag NWs (77 nm) as SERS substrates for the detection of 4-mercaptopyridine was also demonstrated. As the properties of metal nanostructures are strongly dependent upon size, the results reported herein can have important implications for designing the synthesis of uniform Ag NWs in high yields displaying controlled and/or desired dimensions for applications in areas including plasmonics, electronics, and sensing.

Graphical abstract: Size-controlled synthesis of silver micro/nanowires as enabled by HCL oxidative etching

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2012
Accepted
30 Nov 2012
First published
30 Nov 2012

Phys. Chem. Chem. Phys., 2013,15, 1887-1893

Size-controlled synthesis of silver micro/nanowires as enabled by HCL oxidative etching

C. C. S. de Oliveira, R. A. Ando and P. H. C. Camargo, Phys. Chem. Chem. Phys., 2013, 15, 1887 DOI: 10.1039/C2CP43108D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements