Issue 44, 2012

Composite fuelelectrode La0.2Sr0.8TiO3−δ–Ce0.8Sm0.2O2−δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser

Abstract

Composite Ni–YSZ fuel electrodes are able to operate only under strongly reducing conditions for the electrolysis of CO2 in oxygen-ion conducting solid oxide electrolysers. In an atmosphere without a flow of reducing gas (i.e., carbon monoxide), a composite fuel electrode based on redox-reversible La0.2Sr0.8TiO3+δ (LSTO) provides a promising alternative. The Ti3+ was approximately 0.3% in the oxidized LSTO (La0.2Sr0.8TiO3.1), whereas the Ti3+ reached approximately 8.0% in the reduced sample (La0.2Sr0.8TiO3.06). The strong adsorption of atmospheric oxygen in the form of superoxide ions led to the absence of Ti3+ either on the surface of oxidized LSTO or the reduced sample. Reduced LSTO showed typical metallic behaviour from 50 to 700 °C in wet H2; and the electrical conductivity of LSTO reached approximately 30 S cm−1 at 700 °C. The dependence of [Ti3+] concentration in LSTO on PO2 was correlated to the applied potentials when the electrolysis of CO2 was performed with the LSTO composite electrode. The electrochemical reduction of La0.2Sr0.8TiO3+δ was the main process but was still present up to 2 V at 700 °C during the electrolysis of CO2; however, the electrolysis of CO2 at the fuel electrode became dominant at high applied voltages. The current efficiency was approximately 36% for the electrolysis of CO2 at 700 °C and a 2 V applied potential.

Graphical abstract: Composite fuel electrode La0.2Sr0.8TiO3−δ–Ce0.8Sm0.2O2−δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser

Article information

Article type
Paper
Submitted
02 Jul 2012
Accepted
03 Oct 2012
First published
03 Oct 2012

Phys. Chem. Chem. Phys., 2012,14, 15547-15553

Composite fuel electrode La0.2Sr0.8TiO3−δ–Ce0.8Sm0.2O2−δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser

Y. Li, J. Zhou, D. Dong, Y. Wang, J. Z. Jiang, H. Xiang and K. Xie, Phys. Chem. Chem. Phys., 2012, 14, 15547 DOI: 10.1039/C2CP42232H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements