Issue 31, 2012

Z-BN: a novel superhard boron nitride phase

Abstract

A superhard boron nitride phase dubbed as Z-BN is proposed as a possible intermediate phase between h-BN and zinc blende BN (c-BN), and investigated using first-principles calculations within the framework of density functional theory. Although the structure of Z-BN is similar to that of bct-BN containing four-eight BN rings, it is more energetically favorable than bct-BN. Our study reveals that Z-BN, with a considerable structural stability and high density comparable to c-BN, is a transparent insulator with an indirect band gap of about 5.27 eV. Amazingly, its Vickers hardness is 55.88 GPa which is comparable to that of c-BN. This new BN phase may be produced in experiments through cold compressing AB stacking h-BN due to its low transition pressure point of 3.3 GPa.

Graphical abstract: Z-BN: a novel superhard boron nitride phase

Article information

Article type
Paper
Submitted
29 Apr 2012
Accepted
21 Jun 2012
First published
22 Jun 2012

Phys. Chem. Chem. Phys., 2012,14, 10967-10971

Z-BN: a novel superhard boron nitride phase

C. He, L. Sun, C. Zhang, X. Peng, K. Zhang and J. Zhong, Phys. Chem. Chem. Phys., 2012, 14, 10967 DOI: 10.1039/C2CP41368J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements