Issue 19, 2012

Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation

Abstract

Porous, nanostructured BiVO4 films are incorporated with Mo and W by simultaneous evaporation of Bi, V, Mo, and W in vacuum followed by oxidation in air. Synthesis parameters such as the Bi : V : Mo : W atomic ratio and deposition angle are adjusted to optimize the films for photoelectrochemical (PEC) water oxidation. Films synthesized with a Bi : V : Mo : W atomic ratio of 46 : 46 : 6 : 2 (6% Mo, 2% W) demonstrate the best PEC performance with photocurrent densities 10 times higher than for pure BiVO4 and greater than previously reported for Mo and W containing BiVO4. The films consist of a directional, nanocolumnar layer beneath an irregular surface structure. Backside illumination utilizes light scattering off the irregular surface structure resulting in 30–45% higher photocurrent densities than for frontside illumination. To improve the kinetics for water oxidation Pt is photo-deposited onto the surface of the 6% Mo, 2% W BiVO4 films as an electrocatalyst. These films achieve quantum efficiencies of 37% at 1.1 V vs. RHE and 50% at 1.6 V vs. RHE for 450 nm light.

Graphical abstract: Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2012
Accepted
14 Mar 2012
First published
23 Mar 2012

Phys. Chem. Chem. Phys., 2012,14, 7065-7075

Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation

S. P. Berglund, A. J. E. Rettie, S. Hoang and C. B. Mullins, Phys. Chem. Chem. Phys., 2012, 14, 7065 DOI: 10.1039/C2CP40807D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements