Issue 11, 2012

Desorption of alkali atoms from 4He nanodroplets

Abstract

The dynamics following the photoexcitation of Na and Li atoms located on the surface of helium nanodroplets has been investigated in a joint experimental and theoretical study. Photoelectron spectroscopy has revealed that excitation of the alkali atoms via the (n + 1)s ← ns transition leads to the desorption of these atoms. The mean kinetic energy of the desorbed atoms, as determined by ion imaging, shows a linear dependence on excitation frequency. These experimental findings are analyzed within a three-dimensional, time-dependent density functional approach for the helium droplet combined with a Bohmian dynamics description of the desorbing atom. This hybrid method reproduces well the key experimental observables. The dependence of the observables on the impurity mass is discussed by comparing the results obtained for the 6Li and 7Li isotopes. The calculations show that the desorption of the excited alkali atom is accompanied by the creation of highly non-linear density waves in the helium droplet that propagate at supersonic velocities.

Graphical abstract: Desorption of alkali atoms from 4He nanodroplets

Article information

Article type
Paper
Submitted
09 Nov 2011
Accepted
12 Jan 2012
First published
13 Jan 2012

Phys. Chem. Chem. Phys., 2012,14, 3996-4010

Desorption of alkali atoms from 4He nanodroplets

A. Hernando, M. Barranco, M. Pi, E. Loginov, M. Langlet and M. Drabbels, Phys. Chem. Chem. Phys., 2012, 14, 3996 DOI: 10.1039/C2CP23526A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements